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Abstract. Energy of a fuzzy graph is defined as the sum of absolute values of the
eigenvalues of the adjacency matrix of the fuzzy graph. Similarly, the distance (resistance
distance) energy of a fuzzy graph G is defined as the sum of the absolute values of the
eigenvalues of the distance (resistance distance) matrix of G. Also, the Laplacian energy of
a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the
average degree of G. In this paper, we compute mentioned energies for regular fuzzy graph
which its crisp graph is a cycle.
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1. Introduction

Many real world systems can be modeled using graphs. Graphs represent the
connections between the entities in these systems. The pictorial representation of a
graph consists of a set 'of points joined by arcs. To make use of computers to solve
problems on graphs, they had to be stored in the memory of computers. This is
done using matrices. Many kinds of matrices are associated with a graph. For
instance, adjacency matrix, Laplacian matrix, distance matrix.

The spectrum of one such matrix, adjacency matrix is called the spectrum of the
graph. The properties of the spectrum of a graph is related to the properties of the
graph. The area of graph theory that deals with this is called spectral graph theory.
The spectrum of a graph first appeared in a paper by Collatz and Sinogowitz in
1957. At present, it is widely studied owing to its applications in physics,
chemistry, computer science and other branches of mathematics. Cvetkovic and
Gutman have discussed these applications in detail in [4].

A concept related to the spectrum of a graph is that of energy. As its name
suggests, it is inspired by energy in chemistry. The study of z-electron energy in
chemistry dates back to 1940's but Gutman is defined it mathematically for all
graphs. Organic molecules can be represented by graphs called molecular graphs.
In case of unsaturated conjugated hydrocarbons, the energy of z- electrons of the
molecule is approximately the energy of its molecular graph [3].

Fuzzy graphs are generalizations of graphs. Fuzzy graphs are encountered in
fuzzy set theory. A fuzzy set was defined by Zadeh. Rosenfeld (1975) considered
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fuzzy relations on fuzzy sets [15] and developed the theory of fuzzy graphs, and
then some basic fuzzy graph theoretic concepts and applications have been
indicated, many authors found deeper results and fuzzy analogues of many other
graph theoretic concepts. The energy of a fuzzy graph and some bounds on energy
of fuzzy graphs are studied in [1].

2. Preliminaries

It is quite well known that graphs are simply models of relations. A graph is a
convenient way of representing information involving relationship between
objects. The objects are represented by vertices and relations by edges. When there
is vagueness in the description of the objects or in its relationships or in both, it is
natural that we need to design a "Fuzzy Graph Model". We know that a graph is a
symmetric binary relation on a nonempty set V. Similarly, a fuzzy graph is a
symmetric binary fuzzy relation on a fuzzy subset.

Let V be a nonempty set. A fuzzy subset of V is a function o:V — [0,1]. o is
called the membership function and o (v) is called the membership of v where v €
V.

Define a fuzzy subset u: V x V — [0,1] as u(u, v) < min{o(u),a(v)}. Then, u
is called a fuzzy relation on o. u(v;, v;) is interpreted as the strength of relation
between v; and v; [11]. u is said to be symmetric, if u(v;,v;) = u(v;,v;) for
u,vev.

A fuzzy relation can also be expressed by a matrix called fuzzy relation matrix
M= [mU] where m;; = /.l(Ui,Uj).

A fuzzy graph with V as the underlying set is a pair of functions G = (o, 1),
where o is a fuzzy subset of a set V and u is a fuzzy relation on o [12]. The
underlying crisp graph of G = (o, ) is denoted by G* = (V,E) where E € V Xx.

Throughout this paper, we suppose G = (o, u) is undirect, without loops and
o(v) =1,foreachv e V.

The adjacency matrix A(G) of a fuzzy graph G = (o,) IS an n X n matrix
defned as A(G) = [a;;], where a;; = u(v;, v;). The eigenvalues of A(G) are called
eigenvalues of G.

Definition 2. 1. ([1]) Let G = (o, p) be a fuzzy graph and A be its adjacency
matrix. Energy of G is defined as the sum of absolute values of eigenvalues 7, >
T, = -+ 2 1,0f A and is denoted by E(G) as

n

E(G) =Z 7.

i=1
The degree of vertex u in G = (o,u) is defined as d;(u) = Yyver #(W, v).
Moreover, If d;(u) =k for all u € V (i.e. if each vertex has same degree k),
then G is said to be a regular fuzzy graph of degree k or a k—regular fuzzy graph.
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The matrix L(G) = D(G) — A(G) is defined as fuzzy Laplacian matrix of G =
(o, 1), where A(G) is the adjacency matrix and D(G) is the degree matrix of G.
The eigenvalues of fuzzy Laplacian matrix L are called Laplacian eigenvalues of
G.

Definition 2. 2. ([13]) The Laplacian energy L(G) of a graph G is equal to the sum
of distance of the Laplacian eigenvalues 1; > 1, > --- > 1,, of G and the average
degree d(G) of G and is denoted by LE(G) as

n

LEG) =z 2 Xsicjsn My .

A
. l n
i=1

2.1. Distance energy of fuzzy graphs
In ordinary graphs, distance energy is defined as sum absolute eigenvalues of
distance matrix, where elements of distance matrix are distance between vertices
[9]. In here, we generalized distance energy for fuzzy graphs.

Let G = (o, 1) be a fuzzy graph. A path P of length n is a sequence of distinct
nodes ug, Uy, *++, Uy Such that w(u;_q,u,) >0, i =1,2,---,n.

The u- distance d,, (u, v) is the smallest x -length of any u - v path, where the x-
length of a path P:ug, uq, -+, Uy, is [15]

n

1
2(P) = Z e
et p (-1, Ui)
If n =0, then define ¢( P )=0.

Definition 2.3. The u-distance matrix of a fuzzy graph G which are said the fuzzy
u-distance matrix, is defined as a square matrix D, (G) = [d;;], where d;; is the -
distance between the vertices v; and v; in G.

Example 2.4. The u-distance matrix of a fuzzy graph G; (Fig. 1) is

0 3.3333 8.3333 10

_ | 3.3333 0 5 13.3333
Du(G)=|g3333 5 0 10
10 13.3333 10 0
vy 0.3 Vo
0.1 2 0.2
Va 0.1 Vs

Fig. 1. A fuzzy graph G,
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The eigenvalues of the fuzzy u-distance matrix D,(G) are denoted by
81,682,+++,6, and are said to be the D,-eigenvalues of G and to form the D,-
spectrum of G, denoted by SPGCDM(G)- Since the fuzzy p-distance matrix is

symmetric, its eigenvalues are real and can be ordered as §; = 6, = -+ = 6,, . We
have

n n
6; = trace(D(G)) = Z d; =0,
n i=1 n n i=1
2 2 2 2
Y o =trace[D, (@ =) Y (dy) =2 ) (dy)"
i=1 i=1j=1 1<i<j<n

Definition 2.5. The u-distance energy DuE(G) (abbreviation, DE(G)) of a fuzzy
graph G is defined as

n
DREG) = ) 181l
i=1

For example, in fuzzy graph G, (Fig. 1),
Specp,(G;) = {25.5953,~1.7799, 83871, ~15.4283}

S0, DUE(Gy) = 51.1907.

Lemma 2.6. ([7]) The distance matrices of any connected graph on n vertices, n >
2, has exactly one positive eigenvalue and exactly n-1 negative eigenvalues.

The above lemma is true for fuzzy graphs. So we have following corollary.
Corollary 2.7. Let D,(G) be p-distance matrix of fuzzy graph ¢ = (o, ) with
eigenvalues §; = &, = -+ = &,,. Then D,E(G) = 26;.

In following theorem, we give bonds for D,E(G) which its proofs are fully
analogous to what Ramane et al. in [14] has done in the case of the ordinary graph.
Hence proofs are omitted.
Theorem 2.8. Let G = (o, u) be a fuzzy graph with n vertices. Then
2 2
a) \/2 Yisi<jen(dij)” < DLE(G) < J2n21si<j5n(dij) :

b) \/2 Z1si<j5n(dij)2 +n(n— 1)|det(D(G)|% < D,E(G).

c) \/Z(n -1 Z1si<j5n(dij)2 + n|det(D(G)|% = D,E(G)
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2
d) DuE(G)S%ZISstn(dij) +

J(n -1 [2 Z15i<jsn(dij)2 - (%Z1si<jsn(dij)2)2]

2.2. Resistance distance energy of fuzzy graphs
The concept of resistance distance, introduced by Klein and Randic [10], arises
naturally from several different considerations and is also mathematically more
attractive than the classical distance. For more background information about
resistance distance we refer to [2, 6, 7, 16].

In here, we generalized some definitions of resistance distance for fuzzy graphs.
Definition 2.9. Let L(G) be the fuzzy Laplacian matrix of G. Let L(i) be the matrix
resulting from removing the ith row and column of the fuzzy Laplacian L and let
L(i,j) the matrix resulting from removing both the ith and jth rows and columns of
L. The resistance distance r;; between v; and v; is zero if i = j, and if i # j, then

_ det(L(i,)))
U7 det(L(d)

3
(=]
s S
0.2 0.3
0.1
L Vo Vy ¥

Fig. 2. A fuzzy graph G,

For example, in fuzzy graph G, (Fig. 2), we have

02 —02 0 0 0
-02 07 -04 —01 0
L(G)=| 0 —04 09 -05 0 |
0 -01 -05 09 —03
0 0 0 -03 03
07 —04 —01 0
L1y =|~04 09  -05 0

-01 -05 09 -03/f
0 0 -0.3 0.3

09 —-05 0 07 —-04 -0.1
L(1,2)=(-05 09 -03}| L(1,5=(-04 09 -0.5]
0 -03 03 -0.1 —-05 09

_det(L(1,2) _ 0.0870
T det(L(1)  0.0174

_det(L(1,5) _ 0.1990
T odet(L(1) ~ 0.0174

ThUS T12 = 5 and T'15 = 114368
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Definition 2.10. The second definition is in terms of electrical networks. Think of
G as an electrical network in which a unit resistance is placed along each edge.
Current is allowed to enter the network only at vertex v; and leave the network
only at vertex v;. Then the resistance distance between v; and v; is the “effective

resistance” between v; and v;.

For example, by this definition in fuzzy graph G, (Fig. 2) we obtain,

1 1 1

1 1

T :—:5, rMgs=—+—4—"75—+—=

12 = g 15702 Ly I T 03 02667
o1 04tos

Definition 2.11. Let J denote the square matrix of order n such that all of whose
elements are unity and L is the fuzzy Laplacian matrix of G. Then resistance

distance between wv; and wv; is 7 =x; +x;; — 2x;, where X = (x;;) =
1 -1
(L+27)

For example, in fuzzy graph G, (Fig. 2), we have

= 11.4368.

0.3885 1.3885 0.2851 —0.1977 -0.8644
X=|-04179 0.2851 1.2506 0.4230 —0.2437

-1.1977 -0.1977 0.4230 1.3195 0.6529 /

—1.8644 —-0.8644 —0.2437 0.6529 3.3195

4.3885 0.3885 —0.4179 -1.1977 —1.8644\
||

So
T12 = x11 + x22 - lez = 43885 + 13885 — 2% 03885 = 5,

Tis = Xq1 + Xgs — 2%;5 = 4.3885 + 3.3195 + 2  1.8644 = 11.4368.

If there is a unique u — v path in G, then it is clear from definition 2.10 that the
resistance distance and u-distance betweenu and v coincide. Thus, we recall
resistance distance r;; with p-resistance distance.

Definition 2.12. let G = (o, u) be a fuzzy graph. The matrix whose (i, j)-entry is
135, Is called the fuzzy u-resistance distance matrix and will be denoted by RD, (G).
This matrix is symmetric and has a zero diagonal.

Example 2.13. The u-resistance distance matrix of a fuzzy graph G, (Fig. 1) is

0 2.5926 3.7037 5.9259

2.5926 0 3.3332 7.0369
3.7037 3.3332 0 5.9259 |

59259 7.0369 5.9259 0

RD,(Gy) =
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Let pq,p2, -+, pybe the eigenvalues of the fuzzy u-resistance-distance matrix
RD,,(G). Since this matrix is symmetric, its eigenvalues are real and can be ordered
as p; = py =+ = p, . Moreover, it is easy to prove that

3

Definition 2.14. The u-resistance distance energy ERD,,(G) of a fuzzy graph G is
defined as sum of absolute values of the eigenvalues of the fuzzy ux —resistance
distance matrix RD,, (G),

n
RD,EG) = ) lpil
i=1
For example, in fuzzy graph G; (Fig. 1),
Specgp, (G1) = {14.5852,—2.4434, ~3.8138, —8.3279},
SO, RDME(Gl) = 29.1703.

Lemma 2.15. ([17]) The resistance distance matrices of any connected graph on n
vertices, n > 2, have exactly one positive eigenvalue and exactly n-1 negative
eigenvalues.

The above lemma is true for fuzzy graphs. So we have following corollary.
Corollary 2.16. Let G = (o,u) be a fuzzy graph and p, = p, = - = p, be
eigenvalues of RD,(G). Then RD,E(G) = 2p;.

In following theorem, we give bonds for ERD,(G) which its proofs are fully
analogous to what Das et al. in [5] has done in the case of the ordinary graph.
Hence proofs are omitted.

Theorem 2.17. Let G = (o, ) be a fuzzy graph with n vertices. Then

a) \/2 Z1si<jsn(7‘ij)2 <RD,E(G) < \/Zn Z1si<jsn(7‘ij)2 :

b) \/ 2 Y cicien(ry)” +n(n - 1)|det(RDﬂ(G)|% < RD,E(G).

c) \/ 2 —1) Y <ic jsn(rij)z + n|det(RD,(G)|" = RD,E(G)
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d) RDLE(G) < %Z1si<jsn(rij)2 +
\/(n _ 1) [2 215i<j5n(rij)2 — (§Z1si<jsn(rij)2)2]

3. Result

In here, we compute the mentioned energies in pervious sections for regular fuzzy
graph which its crisp graph is cycles.

Lemma 3.1. Let G be a d-regular fuzzy graph. Then E(G) = LE(G).

Proof. Let G be d-regular. Also, Suppose t, = 7, = -+ = 1, are eigenvalue of G
and A, = 4, > --- > A, are Laplacian eigenvalue of G. We have 4; =d — 7,,_j11-
So

A —
Therefore E(G) = LE(G).

2
2 Lsicjsn Mij) =4 —d| = |Tn_izal,
n

The following lemma is essential to continue.

Lemma 3.2. ([8]) Let G = (o, 1) be a fuzzy graph where G* = (V,E) is an cycle

of length n. Then

a) Ifnbe odd, then G is regular iff p is a constant function.

b) If n be even, then G is regular iff either u is a constant function or alternate
edges have same membership values.

Theorem 3. 3. Let G = (o, i) be a d-regular fuzzy graph where ¢* = (V,E) is an

odd cycle of length n. Then

n—1

2k7r
cos

E(G)—d+2dz

Proof. According Lemma 3.2, pis constant function. Suppose u = c. Then
adjacency matrix A of G is cA* where A* is adjacency matrix of G*. so
eigenvalues A; of A are cAi* where A;" are eigenvalues of G*. we have

Spec(G)={2c cos == [k =0, 1,-+,n — 1} Thus

2km
E(G) = ZCZ |cos—

2k(n m

On other hand, d = 2¢ and cos% = cos ,fork=1,2,---,n—1, and this

completes the proof.
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Theorem 3. 4. Let G = (o, 1) be a d-regular fuzzy graph where G* = (V,E) is an

LY _
even cycle of length n. Then E(G) = 2d X7 _, |c052k7”| if p is a constant function,

Otherwise

21
& 4kn
E(G)=2 2 d? —2c¢,c,(1 — cosT) ,
k=0
where, ¢;, c, are membership values of edges.

Proof. According Lemma 3.2, we have two cases: a) either p is a constant function
or b) alternate edges have same membership values. In case (a), similarly theorem
3.2, following the result.

In case (b), by Lemma 3.2 we can let u = ¢4, c,. Since n is even, so G determines
a bipartition of the vertex set into two nonempty parts Vi and V; of sizes n, such
that there are no walks of length 2 between Vi and V.. Let B is the representation
matrix of the bipartite graph G. The graph G can be specified by specifying the

g] The

] and so the eigenvalues of A? are those of

matrix B. The adjacency matrix A of G can be write of the form A = [ BOT
BBT 0
0 BB
BBT together with those of BTB. We have BTB = (c;? + ¢,%)I + ¢;¢,Q, where |
is g X %—identity matrix and Q is the adjacency matrix of a simple cycle of length

matrix A satisfies 4% = [

g. By Lemma 3. 1,

4k n
Spec(BTB) = {(012 + ;%) + 2¢4¢, COST k=012, ke 1}_

The eigenvalues of A are therefore square roots of these numbers, and by the
symmetry of the spectrum of A, the eigenvalues of A are n numbers

i\/(clz + ¢32) + 2¢4¢, COSMCTT[ for k = 0,1,2,---,3 —1.Wehaved =c¢; + ¢,
and this completes the proof.

Theorem 3.5. Let G = (o, u) be a d-regular fuzzy graph where G* = (V,E) is an
cycle of length n. If p is a constant function. Then

(m*—1 _
I n is odd
D,E(G) = { 2
k rE nis even

Proof. Let D,(G) = [d;;] be distance matrix of graph G with eigenvalues &§; >
8, = -+ = 8,. According Corollary 2.7, D,E(G) = 26;. So it is sufficient to find
the maximum eigenvalues &; .
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Since G is regular, so by lemma 5.5, §; = }‘:1 dy;. Let Dy be first row of
matrix D, (G). By Lemmas 3.2, we can let u=c. Thus for n odd we have

ot 50 - ()0 B B0

b 2 20) 30) - (0 OO (90

Therefore if n is odd, then

)
> =27 ) -

j=1

>a=2()(2)+ () -1

Since d=2c, the result fo_llow.

2(z) <
©

N

and if n is even, then

Theorem 3.6. Let G = (o, u) be a d-regular fuzzy graph where G* = (V, E) is an
even cycle of length n. If p is non-constant function. Then
8kd

;, n =4k

_ 1C2

DuECG) =4 gra 2 :
—_—t—, n=4k+ 2, c1 < Cy
C1C  C

where ¢, and ¢, are membership values of edges.

Proof. Let D,(G) = [d;;] be distance matrix of graph G with eigenvalues &§; >
&, = -+ = &,. According Lemma 3.2(b), alternate edges have same membership
values. So, we can suppose u = ¢4, C,.
By Corollary 2.7, ED,(G) = 26,. Now to calculate &,, as proof of pervious
theorem we act. Therefor we obtain

( 1 1

4k —+—), n =4k
G G

61=

4k 4k +1 !
— 4+ ) n:4k+2, C1<C2
€1 €2

Since d = ¢; + c;, the result follow.
Lemma 3.7. ([19-20]) Let B = (Bjj) be an n X n nonnegative, irreducible,

symmetric matrix (n = 2) with row sums By, By, -, B,. If A;(B) is the maximum
eigenvalue of B, then
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1= 1BLZ</1 (B) < maxZB-- 5
n 1 1sjsn = Y Bi’

with equality holding if and only if B; = B, = --- = B, or if there is a permutation

matrix Q such that QTBQ = (COT 8

), where all the row sums of C are equal.

Theorem 3.8. Let G = (o, 1) be a d-regular fuzzy graph where G* = (V,E) is an
cycle of length n. Also, suppose 44 = 1, > -+ > 1,,_; = 4, = 0 are eigenvalues of
its fuzzy Laplacian graph. Then

n-1

ntrac(X) + ntrac(X) — 2n = 2n(trace(X) — 1) = an P
On other hands, if p; =p, == p, be eigenvalues of RD ,.(G), then by

Lemma 3.7 we have
n n n n—-1
EOREINWEDY
T rij = 2 —
= i=1 Ai

j=1 i=1j=
Since RD,E(G) = 2p,, so the proof is completed.

SIP—‘

Finally, it is straightforward to realize that for graphs that contain no cycles, both
matrices the fuzzy u-distance and fuzzy u-resistance distance coincide. However,
the presence of cycles reduces the u-resistance distance in comparison with the u-
distance. So, we have following theorem.

Theorem 3.9. Let G = (o, 1) be a fuzzy graph. Then RD,E(G) < D,E(G) with

equality iff G* = (V, E) is acyclic.

Das et al. in [5] shown for any n-vertex tree T,
det(D(G)) = det(RD(G)) = (-1 (n — 1)2"2.

With same argument for fuzzy graph G = (o, 1) which its crisp graph is acyclic,
we obtain

det (D,(6)) = det (RD,(6)) = (-1)"~12"2 2 mi 1_[ mi
ij

1<i<jsn Y ) \1<i<jzn
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Now, by theorems 2.8 and 2.17, we have the following result.

Corollary 3.10. Let G = (o, u) be a fuzzy graph with n vertices, where G* =

2

(V, E) is acyclic. Then J 2% 1<icjen(di))’ + 4n(n — 1) [%]E < RD,E(G) =

DE(G) < J 2(n = 1) Tisicjen(dy)” +4n [5]"

1 1
where § = ¥icicjen—and P = [licicjcn

ij mg;
4, Conclusion

Energy and Laplacian energy of regular fuzzy graph with its crisp graph
cycle are computed. Distance energy and resistance-distance energy for a fuzzy
graph are defined. Some results on energy bounds for simple graphs are extended
to fuzzy graphs. In fuzzy graph there are some another metrics, so In future studies
can be discussed on energy of these distances. Further study on these energies of
fuzzy graphs may reveal more analogous results of these kind and will be
discussed in the forthcoming papers.
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PE3IOME

DHeprus HedeTKoro rpada ompenensercs Kak CyMMa aOCONIOTHBIX 3HAYCHUH
COOCTBEHHBIX 3HAYCHUI MATPHUIIBI CMEKHOCTH HedeTKoro rpada. TOYHO Tak ke dHeprus
paccrostHus (COTIPOTHBIIEHUS) HedeTKoro rpada G ompenensercss kKak cyMMa aOCONTIOTHBIX
3HaYEHWH COOCTBEHHBIX 3HAYCHHUI MAaTpPHIIBI PACCTOSHUS (PACCTOSTHUS CONpoTHBIeHus) G.
Kpowme Toro, sneprus Jlammaca rpada G paBHa cymMMa paccTOSHUI COOCTBEHHBIX 3HAYCHHUN
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Jlammaca G u cpennsis crenenb G. B 3Toi#l cTaThe MBI BBIYKCISIEM YIIOMSHYTHIC YHEPTHU
JUTSL PETYJSIPHOT'O HEYETKOTO Tpada, KOTOPBI ero YeTKUM rpad)OM sSBISICTCS IIHUKIIOM.
KiaroueBble cjioBa: Marpuiia paccTOSHUH, dHEpreTHKa, HEYETKU Tpaduk, paccTosHUE
COTIPOTHUBIICHUS, CIIEKTP.

105



